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Abstract

We review a statistical-geometrical and a generalized entropic approach to the uncer-

tainty principle. Both approaches provide a strengthening and generalization of the standard

Heisenberg uncertainty relations, but in different directions.

1 Introduction

The purpose of this note is to introduce two approaches to the uncertainty principle which have

been developed recently, a statistical-geometrical approach and a generalized entropic approach.

But before we go into this, let us consider why one would need a new approach at all. In other

words, what is unsatisfactory with the traditional approach to the uncertainty principle? In the

standard textbook approach the uncertainty principle for position and momentum is expressed by

the inequality
h

v,/,. A ,P&S2 >_ (1)
or more generally:

1 (I([A, + ([A- {A)e,B -{B)e]+) 2)V¢/,- (AwA)2(AwB) 2 _ ._

for arbitrary observables A and B. Here, AcA etc. is defined as:

(2)

(ACA) 2 = ((A- (A)¢)2)¢ (3)

There are three problems. First, uncertainty relations as (1) or (2) presuppose that all observ-

ables for which one wants to write down an uncertainty relation can be represented as self-adjoint

(or at least normal [1]) operators. Unfortunately this is not always the case. Notorious examples

are time and energy, and phase and photon number. Further, in relativistic quantum theory, even

the status of the position observable becomes dubious. There is no self-adjoint position (vector)

operator for photons [2].

Secondly, note that the right-hand side of (2) still depends on _. It may become zero, even if

A and B do not commute. In fact, this always happens in an eigenstate of A or B. Then, taken

as a general statement about AcAA_B, the inequality only says that this product is greater than

zero for some states and equal to zero for others. That, however, is true also in classical physics.

To read off more from (2), one needs to know the state. But then, when _2 is given, one can also

calculate AcA and AeB directly, without using the inequality at all.
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Even in the casewherethe right-hand side is alwaysstrictly, greater than zero,as in relation
(1), there are further probleins,due to the propertiesof the standard deviations. In the definition
(3) of tile standard deviation, the probability density is integrated with a.quadratic weight factor
that puts most emphasison the tails of the distribution. As a result, the standard deviation can
becomevery high, evenif 99% or moreof the probability distribution is concentrated in a very
small interval, and tile remainder is located in long tails, as e.g. in a Breit-Wigner lineshape.
Thus a largestandard deviation doesnot necessarilypreventa probability distribution from being
very'sharply concentrated,and a boundon the product of standarddeviations by itself doesnot
prevent both observablesfrom beingaspreciselydeterminedasweplease. In the next sectionswe
ask whet}let there aremore stringent,inequalitiesthat. improve on the aboveaspects.

2 Statistical-geometrical approach

It is usual to assume in quantum theory that. lhe stale of the system is given. But in this section

we consider an inverse problem. SUl)l)ose w_'(1o11'I, kliow the state of the systeni. Our problem is

to make a statistical inference about this state from given measurement results.

For definiteness, let us a.ssume that some partial information about the state is given: it belongs

to a given set of (pure) states labeled by an index parameter 0. To be more specific, it is asumed

that. t[lese states are generated by some unitary group:

t_,"'e)= e':°al_l'/) (4)

where A is a. self-adjoint operator. We can think of this set of states as describing a curve in state

space. The pl'oblen_ of statistical inference is now equivalent to that of estimating the value of 0.

h is (:lear that a detailed discussion of this eslimation problelli should involve the kind of mea-

surenlcnts perfornled, the results obtained, and criteria distinguishing "good' froln 'bad' estimates.

ttowever, even without going into details of statistical tileory [3, ,1], it can 1)e niade plausible that a

fundaInental bound for lhe estin_ation accuracy is ot)tained by considering the overlap [('_i,e[,i,0+60)l.

If this overlap is high the states resemble each other much and a typical measurement result which

would be probable or improbable in one state would likewise be probable or improbable in the

other. Then one cannot expect to discriminate the states by any measurement procedure. It is

only when th( overlap begins to fall off that there are observables whose probability dislributions

for the states _'o and g'o+_e differ enough to allow for accurate discrimination.

This suggests the following definilion. ('tl()os(' some fixed value/7 < 1 and define the estimation

inaccuracy (5¢,0 as ttl(- sniallest value of ¢50 for which

I(v'01,i'0+,,0)l=

Due to the particular choice (4), this overlap does not depend oil the value of 0. One can then

st_ow' [5, 6.7.8]

V_, g_,:,OA,_,,A> 2D arccos/3 (5)

This then represents a useful uncertainty relation. It says that an unlimited increase in the

estimation accuracy of 0 is only possible at the expense of an increased spread in A.

Several remarks are called for. First, these relations are applicable to any one-parameter uni-

t,ary group. Obvious examples are the translations in time, represented 1)3" the evolution operators
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U(t) = exp(-itH/h) or the translations in space, exp(ixP/h), where P is the momentum opera-

tor; or we can consider an angle of rotation and angular momentum, or phaseshifts and photon

number. In short, we find statistical uncertainty relations of the type (5) in every case where A

is the generator of a unitary group and 0 the group parameter. This approach is in fact ideally

suited for a relativistical treatment of quantum theory in which one starts from the construction

of unitary groups from the symmetries of the system.

Secondly, relation (5) is asymmetrical; 5_0 is an inaccuracy of estimation of a parameter (i.e.

a c-number). AcA on the other hand is the r.m.s, spread of a quantum mechanical observable

(self-adjoint operator). Since one does not need a pair of operators to obtain relation (5) there

are no problems when such a pair does not exist.

However if one does exist, e.g. in the case of non-relativistic position and momentum, it is

possible to take advantage of that fact. Then there is a second, independent, uncertainty relation

for the spread in position and the estimation accuracy of the parameter in the group of kicks

{U(p) = exp(-ipQ/h)}, i.e. shifts in momentum. This r&tores symmetry between position and

momentum. More importantly, we note that the position operator mimicks the parameter x of

the translation group in the sense that

= x (6)

(assuming (¢1Q1¢1) = 0) i.e. the position operator acts a.s a.n unbiassed estimator of the location

parameter. From this it follows: [9]

1

( 50 2\-
I(¢ol ,e+ao)12_<(1 + 2--_,Q) )

combined with (5), where A is interpreted as Inomentum, this result implies the standard uncer-

tainty relation (1). In fact, as a bonus, we obtain (1) not only for tile position operator propel',

but for any other operator acting as unbiassed estimator of x as well.

There is only one problem of those mentioned in the previous section that is not solved by the

relations (5): they still rely on one standard deviation, and thus become useless for states in which

this diverges. To fix this problem, the standard deviation can be replaced by an interquantile range,

i.e. the smallest size W_(A) of an interval W on which a fraction o' < 1 of the total probability

distribution for A is concentrated: fw I( 'la)l 2& = o. a variation of the proof of (5) gives [6, 8]

l+fl-a
5,0Wv,(A) > h arccos if fl >_ 2a - 1 (r)

Ol

Finally we note that this concept of estimation inaccuracy fits into a general geometrical

approach to statistical inference on the basis of the Fisher iutormation metric [4]. Let it suffice

here to note that this metric equips Hilbert space with a statistical distance between states which

equals

¢,') -- arccos I(#'1#">1

and that the geometrical background of (5) is the simple fact that the distance between _)o and

¢0' (i.e. the right hand side of (5)) is less than the length of the curve (4) connecting these points.

This also point the way to how the relations are to be generalized in cases where the curve is not

generated by a unitary group.
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3 Generalized entropic approach

For a discrete probability distribution p = (pl,... Pn), with Pi ___0, _-_iPi -- 1, the Shannon entropy

H (p) := - _ p, log p, (8)

represents, roughly speaking, a measure of whether the distribution is 'spread out' or 'peaked'. If

A and B are quantum observables for which an uncertainty principle holds, it is natural to ask

for a lower bound of the sum of the Shannon entropies for the probabilities I(¢]a,)t 2 and (¢lb_)l_
[10, 11]. Here we assume a discrete spectrum and la,) and Ibi) denote the eigenstates of A and B.
It turns out that

H(¢, A) + H(¢, B)'= H(l(Vla,)I _) + H(I(¢Ibj)I _) _ -2 log sup I(a, lbj)l
_$

(9)

This entropic uncertainty relation limits the concentration of both probability distributions by a

bound which is independent of _.

There is a class of expressions that share many properties with the Shannon entropy, and also

represent useful measures of 'peakedness' or concentration:

Mr(p) = (_-_p_+_)l/T (10)

Their properties have been studied extensively by Hardy, Littlewood and Pdlya and by Renyi [12].

( -log Mr is known as Renyi entropy.) Special cases are:

Moo(p) = suppi , Mo(p) = c -H(p) , M-I(p) = (#{i : pi > 0}) -1 (11)
i

Where # counts the number of elements ill a set. The generalized entropic uncertainty relation

then reads: [11, 13]

MT(l(_/,la,)12)Ms(l(g, lbj)l 2) <_supl(a, lbj)l2 for r= -s/(2s + 1) r,s >_ -1/2 (12)

which contains the relations (9) as the special case with 7" = s = 0.

Remarks: The above inequalities apply to any pair of discrete observables and yield a non-

trivial bound iff these observables do not share all eigenstate. (A condition which is slightly

stronger than mere non-commutativity.) In the case of a two-dimensional Hilbert space, the most

restrictive bounds are obtained by the choice r = -1/2. s = cx_ o1" v.v.

Secondly, in the proof of (12) it is not necessary to assume that observables are represented by

self-adjoint operators. It is sufficient to demand the existence of the sets of "eigenstates" {[a_)}

and {Ibj)}, possibly non-orthogonal, such that

la,><a,I= g, _ Ib,><Z,_l= Zr (13)
i i

Thus, the approach of this section is also applicable if one accepts unitary operators [14] or even

more generally, positive-operator-valued measures (PO\:M's) [15] as bona fide representations of

observables. As an example, we mention a phase observable below.
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In the case of continuous observables, it appears necessary to replace (8) and (10) by a relative

notion of entropy:

M_(pI#) := O." ] ' H(Pl ) = - l°g M°(Pl ) = - J l°g d"
(14)

where 0p/0# is the Radon-Nikodym derivative of a probability measure p with respect to a 'back-

ground measure' #. These expressions reflect whether the probability distribution p is concentrated

in comparison with #. In the discrete case, the absolute entropies are recovered by choosing # to

be the counting measure #. In the case of continuous observables it is natural to take for # the

Lebesgue measure, and Op/O# becomes an ordinary probability density.

For continuous nondegenerate operators A and B a theorem of Haussdorf and Young analogous

to (12) leads to [17, 13]

:= _<sup I(aib)l

(Still assuming r = -s/(2s + 1).) For position and momentum a slightly stronger inequality

>_2(1 + r)(1 + 2r)-(1+2r)/(2r)(27rh)-I is obtained by a theorem of Beckner.

These inequalities are all sharp for Gaussian 'minimum uncertainty' states and strictly imply the

standard uncertainty relations (1).

Let N be the photon number operator of a single electromagnetic field mode, with eigen-

states In) and _ In}(nl = g. A description of a phase observable by means of a POVM ¢ was

constructed by L6vy-Leblond and by Susskind and Glogower [14, 16] from the non-orthogonal

improper "eigenstates"

I0) = (2_-h)-_/_ _ ei*nl,_ )
n

This yield a resolution of identity f02'_d¢1¢)(¢1 = H in analogy with (13).

analogous uncertainty relation
1

Mr($, ¢)Ms(_/', N) <_ 2_rh

where

Here one finds an

(15)

d@ 1/' (= ,
n=0

Let us finally compare the two different approaches. Both improve on the standard approach in

the sense that they yield hounds which are state independent and strictly imply AoPA_0Q >__h/2.

The statistical/geometrical approach is restricted to conjugate pairs of quantities: time/energy,

location/momentum, angle/angular momentum etc. All such pairs are treated, on the same

footing, as consisting of a parameter and an observable. It is essential that the observable is

represented as a self-adjoint operator because of its role in (4). The approach is relativistically

invariant. The entropic approach, on the other hand, is applicable to pairs of arbitrary observables,

not necessarily conjugate pairs or even self-adjoint operators. It is sufficient that they do not share

eigenstates. However, these uncertainty relations do not seem to have a relativistic generalization.

Also, the last problem mentioned in the introduction is not completely overcome in this approach.

IN the example of the Breit-Wigner distribution one still has the result M,.(p]#) = 0 for r _< 0

and the inequality is not very restrictive.
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